稻瘟病与纹枯病(稻瘟病与纹枯病的区别)
病虫害发生程度是影响水稻高产稳产重要因素,而病害的发生与品种、气候、栽培措施、农事操作等多种因素相关,因而病害的发生更具有暴发性、不可预测性;病害防治效果也受到药剂品种、天气条件、施药质量等多种因素的影响,多种不确定因素的综合作用决定了病害防治的难度。本文总结了近年来我们国内研究者对水稻主要病害发生规律和防治技术上的研究进展,以期对以后的水稻病害防治工作有所益处。
1水稻真菌病害水稻上发生的真菌性病害有10多种,而目前主要的、危害比较重的有稻瘟病、纹枯病、稻曲病和水稻恶苗病。
1.1稻瘟病
稻瘟病是由稻瘟病菌引起的水稻真菌性病害。稻瘟病是一种世界性稻作病害,全球每年因稻瘟病造成的水稻产量损失达11%~30%,20世纪90年代以来,中国稻瘟病的年发生面积均在380万hm2以上,稻谷损失达数亿公斤。(1)稻瘟病发生规律
稻瘟病菌主要以分生孢子和菌丝在病稻草或病谷上越冬,第2年在适宜条件下,病菌就会产生大量的分生孢子,借风雨传播到植株表皮上的机动细胞后,开始其侵染过程。稻瘟病菌侵染水稻5~7天后出现症状,完成侵染后,被侵染的细胞又产生新的分生孢子,依靠气流再次传播,形成重复侵染。
稻瘟病在水稻的各个时期及各部位都有发生,4叶期至分蘖期和抽穗期最易感染稻瘟病,以叶瘟和穗瘟最为常见,危害也最大。目前稻瘟病的防治措施主要包括抗病品种选育、药剂防治和栽培管理。
(2)稻瘟病的化学防治
防治稻瘟病的药剂种类很多,按照研发、商品化的先后以及其作用机理可以分为以下几类:
①早期重金属化合物时代。铜制剂是早期防治稻瘟病的主要无机杀菌剂,它们对稻瘟病的防治效果一般且容易产生药害。这类化合物都不具有内吸性,只表现出保护作用。上世纪50年代还出现过有机汞类农药,结构通式为R-Hg-X,如醋酸苯汞,对稻瘟病有一定的防效且药害小于铜制剂。由于有机汞对人的毒性问题,从1968年起各国陆续禁止了有机汞类化合物的使用。早期铜制剂和汞制剂类等重金属化合物属于保护性、多作用位点药剂,其中的Cu2+和Hg2+易与稻瘟病菌内蛋白或酶的-SH结合,从而影响其相关酶的活性,阻断糖酵解过程,并干扰能量的形成,最终导致病原菌死亡。
②农用抗生素。随着有机汞类化合物的禁用,以灭瘟素和春雷霉素为代表的农用抗生素成为防治稻瘟病重要品种。灭瘟素也称稻瘟散,以10~20μg/mL进行喷雾能很好地防治稻瘟病,但浓度较高时会灼伤水稻叶片。春雷霉素也称春日霉素、加收米,具有保护和治疗作用及很强的内吸性。
灭瘟素和春雷霉素等属于蛋白质生物抑制剂,这类抗生素主要是间接影响稻瘟病菌蛋白质的合成。
③有机氯类。这类化合物也是替代有机汞的重要药剂之一,因这类农药残留时间长,对后茬作物易造成药害,不易降解,对人畜具有潜在威胁等问题,目前仅有四氯苯肽由于毒性相对较小仍在使用。四氯苯肽又名稻瘟肽、热必斯,属于低毒杀菌剂,对鱼类安全,只能用于防治稻瘟病,具有较强的保护作用,持效期长,在水稻抽穗后喷雾处理两次即可有效防治稻瘟病。
④有机磷类与稻瘟灵。稻瘟净、异稻瘟净和敌瘟磷等都属于有机磷类杀菌剂,是取代有机汞制剂后20世纪七、八十年代防治稻瘟病的主要药剂。其中异稻瘟净和克瘟散均已商品化。稻瘟净在水稻生长后期使用,会使稻谷带有恶臭,影响产品品质,因而限制了其推广应用。
二硫杂环戊烷类的稻瘟灵于20世纪70年代开发成功,与有机磷类化学结构不同,但有着相似的作用机制,且稻瘟灵与有机氯类杀菌剂存在交互抗性。稻瘟灵具有内吸性,根系和水面处理均可很好地防治稻瘟病,属于低毒杀菌剂,但对鱼类的毒性也较高。有机磷类与稻瘟灵在20世纪70年代至90年代初成为了防治稻瘟病的主要药剂。但由于长期大量使用,此类药剂抗药性问题也比较突出。
⑤黑色素合成抑制剂。此类药剂包括以三环唑为代表的还原酶抑制剂和以稻瘟酰胺为代表的脱水酶抑制剂两大类,这些化合物防治谱窄,一般只能防治稻瘟病。三环唑是目前我国防治稻瘟病的主要药剂,稻瘟酰胺也开始在生产上大面积应用。
⑥抗病激活剂类。这类药剂包括烯丙苯噻唑、噻酰菌胺、异噻菌胺等异噻唑甲酰胺类化合物,这类化合物对稻瘟病菌没有直接的杀菌(抑菌)作用或抑菌作用较弱,通过诱导水稻抗病性,阻止稻瘟病菌的菌丝在细胞间扩展而达到防病效果。但由于三环唑长久以来的优异表现,这类化合物并未能撼动三环唑在稻瘟病防治中的重要地位。近年来,这些抗病激活剂在国外农药大公司的推动下在国内进行农药登记和田间示范推广,未来可能在稻瘟病防治中得到大面积应用。
⑦三唑类:咪鲜胺、戊唑醇、苯醚甲环唑等三唑类和酰胺类杀菌剂近期都用于稻瘟病防治,但这类药剂多数是与其他杀菌剂混用防治稻瘟病。
⑧甲氧基丙烯酸酯类杀菌剂:甲氧基丙烯酸酯类杀菌剂能有效地防治子囊菌、担子菌、半知菌和卵菌等真菌引起的病害,目前已登记用于稻瘟病防治的主要有嘧菌酯、苯氧菌酯、吡唑醚菌酯和苯氧菌胺。嘧菌酯叶面喷施或颗粒剂撒播,能有效地控制稻瘟病。由于我国绿色大米生产中禁止使用三环唑,甲氧丙烯酸酯类杀菌剂得以在生产上用于稻瘟病的防治。
(3)稻瘟病菌对杀菌剂的抗药性
①对抗生素的抗性。1969年,上杉首先发现稻瘟病菌对灭瘟素和春雷霉素的敏感性在不同菌株间相差近100倍,1971、1972年在日本的山形市农业试验场出现使用春雷霉素防治稻瘟病失败,在田间监测到了大量的抗性群体,Taga于1979年发现了春雷霉素抗性菌株存在3个抗性位点,并且与灭瘟素存在交互抗性。
国内研究表明,稻瘟病菌对春雷霉素平均EC50值在3.54mg/L左右,可以在室内诱变或驯化出抗性突变体,但在田间没有检测到抗性菌株。
②对有机磷及稻瘟灵的抗药性。1976年在日本富士山等地首次发现异稻瘟净的抗性菌株,并检测到与其他有机磷类杀菌剂如克瘟散和稻瘟灵的交互抗性。在我国,彭云良等于1990年发现了异稻瘟净的抗性菌株,且其对克瘟散、稻瘟净都表现出交互抗性,还检测到部分菌株对稻瘟灵的交互抗药性。
稻瘟病菌对异稻瘟净的抗性频率较高,即使异稻瘟净在生产上已很少使用,而其抗性菌株的频率仍达79.1%。导致稻瘟病菌对异稻瘟净的抗药性如此稳定的原因主要有两个:首先抗性突变体的抗药性是由单个主效基因控制的,其抗药性机理是裂解药剂的“S-C”键而使药剂失去原有的生物活性;抗药性菌株具有很高的适合度。
稻瘟病菌对稻瘟灵的抗药性检测表明,在我国部分地区稻瘟病菌中敏感、低抗和中抗菌株出现的频率分别为21.99%、73.76%和4.26%。
③对甲氧基丙烯酸酯类的抗药性。已经报道QoIs类药剂具有两种类型的抗性机制。由于此类杀菌剂刚应用于稻瘟病的防治,在田间没有检测到抗吡唑醚菌酯的菌株;室内可以诱变到抗性菌株,其抗药性可以稳定遗传,但抗性菌株的适合度显著下降。
④对黑色素合成抑制剂的抗药性。近年来,中国部分稻区出现了三环唑防效下降的现象,怀疑是由于抗药性问题所致。但许多省份的研究者测定表明,到目前为止,还没有任何有关三环唑田间甚至室内抗药性发生的准确报道,稻瘟病菌对三环唑仍然属于极低抗药性风险。
但对于另一大类以烯丙苯噻唑为代表的寄主抗性增强剂性质的化合物是否会出现抗药性问题,还有待进一步的研究与实践观察,因为这类化合物目前大多尚停留在理论研究阶段。目前只有烯丙苯噻唑和苯并噻二唑的应用比较广泛。
⑤对DMls类杀菌剂抗性。辽宁的测定表明,2024年和2024年采集的169株稻瘟病菌对咪鲜胺均为敏感菌株;2024年,大连、抚顺、铁岭、开原和沈阳地区已监测到低抗菌株,抗药性频率分别为7.14%、13.04%、15.38%、10.52%和8.33%。进一步研究表明,稻瘟病菌对咪鲜胺的抗药性不能稳定遗传,室内诱导菌株和1株田间菌株经过9代转代,由低抗变为敏感;抗性菌适合度低于敏感菌株。这表明稻瘟病菌对咪鲜胺属低抗药性风险;咪鲜胺与嘧菌酯及稻瘟灵之间不存在交互抗药性,可交替使用以延缓抗药性和治理抗药性菌株。
热门作者: 农业播报侠 种子小百科 农产新干线 农情领航灯 绿色农业防治通 种子故事